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Abstract The WNK-dependent STE20/SPS1-related

proline/alanine-rich kinase SPAK is a powerful regulator of

ion transport. The study explored whether SPAK similarly

regulates nutrient transporters, such as the Na?-coupled

glucose transporter SGLT1 (SLC5A1). To this end, SGLT1

was expressed in Xenopus oocytes with or without addi-

tional expression of wild-type SPAK, constitutively active
T233ESPAK, WNK-insensitive T233ASPAK or catalytically

inactive D212ASPAK, and electrogenic glucose transport

determined by dual-electrode voltage-clamp experiments.

Moreover, Ussing chamber was employed to determine the

electrogenic glucose transport in intestine from wild-type

mice (spakwt/wt) and from gene-targeted mice carrying

WNK-insensitive SPAK (spaktg/tg). In SGLT1-expressing

oocytes, but not in water-injected oocytes, the glucose-

dependent current (Ig) was significantly decreased follow-

ing coexpression of wild-type SPAK and T233ESPAK, but

not by coexpression of T233ASPAK or D212ASPAK. Kinetic

analysis revealed that SPAK decreased maximal Ig without

significantly modifying the glucose concentration required

for halfmaximal Ig (Km). According to the chemilumines-

cence experiments, wild-type SPAK but not D212ASPAK

decreased SGLT1 protein abundance in the cell membrane.

Inhibition of SGLT1 insertion by brefeldin A (5 lM)

resulted in a decline of Ig, which was similar in the absence

and presence of SPAK, suggesting that SPAK did not

accelerate the retrieval of SGLT1 protein from the cell

membrane but rather down-regulated carrier insertion into

the cell membrane. Intestinal electrogenic glucose trans-

port was significantly lower in spakwt/wt than in spaktg/tg

mice. In conclusion, SPAK is a powerful negative regulator

of SGLT1 protein abundance in the cell membrane and

thus of electrogenic glucose transport.

Keywords Glucose transport � Intestine � Oocytes �
Mice � WNK

Introduction

SPAK (SPS1-related proline/alanine-rich kinase) is a

powerful regulator of ion transport and blood pressure

(Castaneda-Bueno and Gamba 2010; Rafiqi et al. 2010;

Yang et al. 2010). The activity of SPAK is governed by

WNK (with-no-K[Lys]) kinases (Glover et al. 2011;

O’Reilly et al. 2003; Rafiqi et al. 2010; Vitari et al. 2005),

which are similarly involved in the regulation of ion

transport and blood pressure (Flatman 2008; Furgeson and

Linas 2010; Kahle et al. 2010; Uchida 2010; Wilson et al.

2001). SPAK and the related oxidative stress-responsive

kinase 1 (OSR1) kinase specifically upregulate the NaCl

cotransporter (NCC) and the Na?,K?,2Cl- cotransporter

(NKCC2) (Gagnon and Delpire 2010; Gimenez 2006;

Glover and O’Shaughnessy 2011; Huang et al. 2008; Kahle
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et al. 2010; Lin et al. 2011; Mercier-Zuber and

O’Shaughnessy 2011; Richardson et al. 2011; Villa et al.

2008; Vitari et al. 2005). Mutations of genes encoding

WNK kinases cause Gordon’s syndrome, a genetic disease

characterized by hypertension and hyperkalaemia (Achard

et al. 2001; Capasso et al. 2005; Glover et al. 2011;

O’Reilly et al. 2003). SPAK is expressed in several epi-

thelia including intestine (Ushiro et al. 1998) and more

recent observations revealed the capacity of OSR and/or

SPAK to modify the function of further carriers, such as

Na?-coupled phosphate transport (Pathare et al. 2012a, b),

and Na?/H? exchanger (Pasham et al. 2012b). The kinases

may thus participate in the regulation of further epithelial

transport processes. To the best of our knowledge, how-

ever, nothing is known about a role of SPAK in the regu-

lation of nutrient transport.

The present study thus explored whether SPAK influ-

ences the function of the glucose carrier SGLT1 (Wright

and Turk 2004). To this end, cRNA encoding SGLT1 was

injected into Xenopus oocytes with or without cRNA

encoding wild-type SPAK, WNK1-insensitive T233ASPAK,

constitutively active T233ESPAK, and catalytically inactive
D212ASPAK (Vitari et al. 2005). Glucose transport was

quantified by determination of glucose-induced current in

two-electrode voltage-clamp experiments and protein

abundance of SGLT1 was determined by chemilumines-

cence. Moreover, glucose-induced current was determined

in Ussing chamber experiments of distal jejunum isolated

either from gene-targeted mice expressing SPAK resistant

to WNK-dependent activation (spaktg/tg) or from mice

expressing wild-type SPAK (spakwt/wt).

Materials and Methods

Constructs

Constructs encoding human SGLT1 (Alesutan et al. 2012),

wild-type SPAK, WNK1-insensitive inactive T233ASPAK,

constitutively active T233ESPAK, and catalytically inactive
D212ASPAK (Vitari et al. 2005), were used for generation of

cRNA as described previously (Hosseinzadeh et al. 2013a,

2013b).

Voltage Clamp in Xenopus Oocytes

Xenopus oocytes were prepared as previously described

(Henrion et al. 2012; Hosseinzadeh et al. 2014). Where not

indicated otherwise, 10 ng cRNA encoding SGLT1 was

injected on the first day and 10 ng of cRNA encoding wild-

type SPAK, T233ASPAK, T233ESPAK, or D212ASPAK was

injected on the second day or the same day after oocyte

preparation (Hosseinzadeh et al. 2012; Pathare et al.

2012a). The oocytes were maintained at 17 �C in ND96-A

solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgC12,

1.8 CaC12, 5 HEPES, tretracycline (Sigma, 0.11 mM),

ciprofloxacin (Sigma, 4 lM), gentamycin (Refobacin,

0.2 mM), theophylin (Euphylong, 0.5 mM), sodium pyru-

vate (Sigma, 5 mM). pH was adjusted to 7.5 by addition of

NaOH (Warsi et al. 2014, 2013). In order to discriminate

between enhanced insertion of SGLT1 into the cell mem-

brane and delayed retrieval of SGLT1 from the membrane,

experiments were performed utilizing brefeldin A (Sigma-

Aldrich Chemie, Steinheim, Germany) (Almilaji et al.

2013a). Brefeldin A (5 lM) was added to the culture

medium 24 h after cRNA injection (for total 48 h incuba-

tion with brefeldin A) or 48 h after cRNA injection (for

total 24 h incubation with brefeldin A). The voltage-clamp

experiments were performed at room temperature 3 days

after injection (Munoz et al. 2013; Pakladok et al. 2014).

Two-electrode voltage-clamp recordings were performed at

a holding potential of -60 mV. The data were filtered at

10 Hz and recorded with a Digidata A/D–D/A converter

and Clampex 9.2 software for data acquisition and analysis

(Axon Instruments) (Bogatikov et al. 2012; Shojaiefard

et al. 2012). The control superfusate (ND96) contained (in

mM): 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, and 5

HEPES; pH was adjusted to 7.4 by addition of NaOH.

Glucose was added to the solutions at a concentration of

2 mM, unless otherwise stated. The flow rate of the

superfusion was approx. 20 ml/min, and a complete

exchange of the bath solution was reached within about

10 s (Almilaji et al. 2013b; Dermaku-Sopjani et al. 2013).

Detection of SGLT1 Cell Surface Expression

by Chemiluminescence

Defolliculated oocytes were incubated with rabbit poly-

clonal anti-SGLT1 antibody (diluted 1:1000, Millipore,

Billerica, MA, USA) and subsequently with secondary goat

anti-rabbit HRP-conjugated antibody (1:1000, Cell Sig-

naling Technology, MA, USA). After staining individual

oocytes were placed in 96-well plates with 20 ll of Su-

perSignal ELISA Femto Maximum Sensitivity Substrate

(Pierce, Rockford, IL). The chemiluminescence of single

oocytes was quantified in a luminometer (Walter Wallac 2

plate reader; Perkin Elmer, Jügesheim, Germany) by inte-

grating the signal over a period of 1 s. Results display

normalized arbitrary light units, which are proportional to

the detector voltage (Mia et al. 2012; Pakladok et al. 2013).

Ussing Chamber Experiments

All animal experiments were conducted according to the

German law for the welfare of animals and according to the

guidelines of the American Physiological Society and were
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approved by local authorities (Regierungspräsidium Tüb-

ingen). Experiments were performed using intestinal seg-

ments from 16-week-old female gene-targeted mice

expressing SPAK resistant to WNK-dependent activation

(spaktg/tg) and in mice expressing wild-type SPAK (spakwt/

wt) (Pathare et al. 2012b). The mice were fed a control diet

(1314, Altromin, Heidenau, Germany) and had free access

to tap drinking water.

For analysis of electrogenic intestinal glucose transport,

jejunal segments were mounted into a custom made mini-

Ussing chamber with an opening of 0.00769 cm2. Under

controlled conditions, the serosal and luminal perfusate

contained (in mM): 115 NaCl, 2 KCl, 1 MgCl2, 1.25 CaCl2,

0.4 KH2PO4, 1.6 K2HPO4, 5 Na pyruvate, 25 NaHCO3,

(pH 7.4, NaOH). Where indicated, glucose was added to

the luminal perfusate at the indicated concentrations (the

substances were from Sigma, Schnelldorf, Germany, or

from Roth, Karlsruhe, Germany).

In all Ussing chamber experiments the transepithelial

potential difference (Vt) was determined continuously and

the transepithelial resistance (Rt) was estimated from the

voltage deflections (DVt) elicited by imposing test currents

(It). The resulting Rt was calculated according to Ohm’s

law (Hosseinzadeh et al. 2013a; Rexhepaj et al. 2010).

Statistical Analysis

Data are provided as mean ± SEM, n represents the

number of oocytes or intestinal segments investigated. All

voltage-clamp experiments were repeated with at least 2–3

batches of oocytes; in all repetitions qualitatively similar

data were obtained. Data were tested for significance using

ANOVA (Tukey test or Kruskal–Wallis test) or two-tailed

unpaired t test, as appropriate. Results with p \ 0.05 were

considered statistically significant.

Results

The present study explored whether SPAK influences the

function of SGLT1. To this end, cRNA encoding SGLT1 was

injected into Xenopus laevis oocytes with or without addi-

tional injection of cRNA encoding wild-type SPAK, con-

stitutively active T233ESPAK, WNK-resistant T233ASPAK, or

catalytically inactive D212ASPAK. Electrogenic glucose

transport was estimated from the glucose-induced inward

current (Ig) utilizing dual-electrode voltage clamp (TEVC).

Following addition of 2 mM glucose, no appreciable Ig was

observed in water-injected Xenopus oocytes, indicating that
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Fig. 1 Effect of wild-type SPAK, constitutively active T233ESPAK,

WNK-insensitive inactive T233ASPAK, or catalytically inactive
D212ASPAK on electrogenic glucose transport in SGLT1-expressing

Xenopus laevis oocytes. a Representative original tracings showing

glucose (2 mM)-induced current (Ig) in Xenopus oocytes injected

with water (a), or expressing SGLT1 alone (b), or with additional

coexpression of wild-type SPAK (c), WNK-insensitive T233ASPAK

(d), constitutively active T233ESPAK (e) or catalytically inactive

D212ASPAK (f). b Arithmetic means ± SEM (n = 15–21) of glucose

(2 mM)-induced current (Ig) in Xenopus oocytes injected with water

(dotted bar), expressing SGLT1 alone (white bar), or expressing

SGLT1 together with wild-type SPAK (1st black bar), WNK-

insensitive T233ASPAK (2nd black gray bar), constitutively active
T233ESPAK (3rd black bar), or catalytically inactive D212ASPAK (4th

black bar). * indicates statistically significant (p \ 0.05) difference

from Xenopus oocytes expressing SGLT1 alone (Tukey test)
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Xenopus oocytes do not express appreciable electrogenic

glucose transport (Fig. 1). In contrast, addition of 2 mM

glucose generated a large Ig in Xenopus oocytes expressing

SGLT1 (SLC5A1). The additional expression of wild-type

SPAK or constitutively active T233ESPAK was followed by a

significant decrease of Ig in SGLT1-expressing Xenopus

oocytes. However, additional expression of WNK-insensi-

tive inactive T233ASPAK or catalytically inactive
D212ASPAK did not modify Ig in SGLT1-expressing Xenopus

oocytes (Fig. 1a, b).

Additional experiments were performed in order to test

whether SPAK influences the maximal transport rate of

SGLT1 or carrier affinity to glucose. To this end, Xenopus

oocytes expressing SGLT1 alone or together with SPAK

were exposed to glucose concentrations ranging from 1 lM

to 20 mM (Fig. 2). Kinetic analysis of the glucose-induced

currents yielded a maximal current of 325 ± 16 nA

(n = 9) in Xenopus oocytes expressing SGLT1 alone.

Coexpression of SPAK significantly (p \ 0.001) decreased

the maximal current to 214 ± 8 nA (n = 9). Calculation of

the glucose concentration required for half maximal current

(KM) yielded values of 641 ± 99 lM in oocytes expressing

SGLT1 alone and of 798 ± 159 lM in oocytes expressing

both, SGLT1 and SPAK, values are not significantly dif-

ferent. Thus, coexpression of SPAK decreased SGLT1

activity at least in part by decreasing the maximal current.

The decreased maximal electrogenic glucose transport

in SGLT1-expressing oocytes following coexpression of

SPAK could have resulted from decreased carrier protein

abundance in the plasma membrane. Thus, chemilumines-

cence was employed in order to determine the SGLT1

protein abundance in the cell membrane of oocytes injected

with water, expressing SGLT1 alone, expressing SGLT1

together with wild-type SPAK or expressing SGLT1

together with catalytically inactive D212ASPAK. As shown

in Fig. 3, the coexpression of SPAK was followed by a

significant decrease of SGLT1 protein abundance within

the oocyte cell membrane. In contrast, the coexpression of

catalytically inactive D212ASPAK did not alter SGLT1

protein abundance in the oocyte cell membrane.

SPAK could impair SGLT1 protein abundance either by

down-regulating carrier protein insertion into the cell

membrane or by accelerating retrieval of carrier protein

from the cell membrane. In order to discriminate between

those two possibilities the SGLT1-expressing Xenopus

oocytes were treated with 5 lM brefeldin A. As illustrated

in Fig. 4, the glucose-induced current declined in the pre-

sence of brefeldin A at a similar rate in oocytes expressing

SGLT1 alone and in oocytes expressing SGLT1 together

with SPAK. After 24 h treatment with brefeldin A, Ig was

similarly low in oocytes expressing SGLT1 together with

SPAK as in oocytes expressing SGLT1 alone. Thus, SPAK

did not appreciably accelerate the retrieval of SGLT1

protein from the cell membrane but rather down-regulated

SGLT1 by inhibiting carrier insertion into the cell

membrane.

To test whether downregulation of SGLT1 by SPAK

plays a role in vivo, glucose-induced current was measured

in jejunal tissue utilizing Ussing chamber experiments. As

illustrated in Fig. 5, the glucose-induced current was sig-

nificantly higher in gene-targeted mice expressing WNK-

insensitive SPAK (spaktg/tg) than in intestine from their

wild-type littermates (spakwt/wt).

Discussion

The present study reveals that the WNK-dependent STE20/

SPS1-related proline/alanine-rich kinase SPAK is a pow-

erful negative regulator of the high affinity Na?-coupled

glucose transporter SGLT1, a nutrient carrier expressed

predominantly in the brush border of the small intestine

and the proximal tubule within the kidney (Wright and

Turk 2004). The carrier couples the uphill reabsorption of

glucose to the downhill movement of Na? across the

plasma membrane. SPAK is at least partially effective by

decreasing the SGLT1 protein abundance in the cell

membrane. Possibly, SPAK interferes with the insertion of

the carrier into the cell membrane. Along those lines, the

differences of electrogenic glucose transport between

Xenopus oocytes expressing SPAK and SGLT1 and

Xenopus oocytes expressing SGLT1 alone were dissipated

by prevention of carrier insertion with brefeldin A.
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Fig. 2 Effect of wild-type SPAK on the kinetics of electrogenic

glucose transport in SGLT1-expressing Xenopus laevis oocytes.

Arithmetic means ± SEM (n = 9) of glucose-induced current (Ig) as

a function of glucose concentration in Xenopus oocytes expressing

SLC5A1 (SGLT1) alone (black circles) or together with wild-type

SPAK (white circles). The values were fitted to Michaelis–Menten

equation
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The present study demonstrates that both wild-type and

constitutively active T233ESPAK, but not the catalytically

inactive mutant D212ASPAK (Vitari et al. 2005) down-

regulated SGLT1. Thus, kinase activity is apparently

required for the observed effect. Moreover, the effect

obviously required WNK1-sensitive activation of SPAK, as

the WNK-insensitive T233ASPAK (Vitari et al. 2005) was

not capable to downregulate SGLT1 activity. Along those

lines, mice carrying the WNK1-insensitive T243ASPAK

instead of wild-type SPAK had higher intestinal SGLT1

activity than wild-type mice.

The regulation of SGLT1 by SPAK impacts on intestinal

electrogenic glucose transport. Multiple mechanisms are

known regulating intestinal glucose transport. According to

previous observations SGLT1 could be regulated by altered

transcription (Martin et al. 2000), mRNA stability (Loflin

and Lever 2001), transporter protein abundance in the

plasma membrane (Hirsh and Cheeseman 1998), and

transporter activity (Vayro and Silverman 1999). Regula-

tors of SGLT1 activity include cytosolic Na? activity

(Kusche-Vihrog et al. 2009), insulin (Stumpel et al. 1996),

insulin-like growth factors (Lane et al. 2002), glucagon-

like peptide 2 (Cheeseman 1997), cholecystokinin (Hirsh

and Cheeseman 1998), adrenergic innervation (Ishikawa

et al. 1997), lipopolysaccharides (Amador et al. 2008), and

carbohydrate-rich diet (Ferraris and Diamond 1989).

Kinases involved in the regulation of SGLT1 activity

include AMP-activated kinase (AMPK) (Sopjani et al.

2010), protein kinase C (Veyhl et al. 2003), phosphatidy-

linositol-3-phosphate-5-kinase PIKfyve (PIP5K3) (Sho-

jaiefard et al. 2007), glycogen synthase kinase 3 (Rexhepaj

et al. 2010), oxidative stress-regulated kinase (OSR)

(Pasham et al. 2012a), B-RAF (Pakladok et al. 2012), Tau

tubulin kinase 2 (Alesutan et al. 2012), Janus-activated

kinase (JAK2) (Hosseinzadeh et al. 2011), phosphatidylin-

ositol (PI) 3 kinase (Rexhepaj et al. 2007), PIK3-regulated
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Fig. 4 Decline of electrogenic glucose transport in the presence of

brefeldin A in oocytes expressing SGLT1 with or without SPAK.

Arithmetic means ± SEM (n = 5–14) of glucose (2 mM)—induced

current (Ig) in Xenopus oocytes injected with cRNA encoding SGLT1

without (SGLT1, white bars) or with (SGLT1 ? SPAK, black bars)

wild-type SPAK and exposed to 5 lM brefeldin A for the indicated

time periods. **p \ 0.01 indicates statistically significant difference

from the absence of SPAK; ###p \ 0.001 indicates statistically

significant difference from the absence of brefeldin A (Tukey test)
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the transepithelial jejunal potential difference in spakwt/wt and spaktg/

tg mice. Arrows highlight the addition of glucose (20 mM). b Arith-

metic means ± SE (n = 6) of the glucose-sensitive equivalent short-

circuit current in jejunum from spakwt/wt (white bar) and spaktg/tg

mice (black bar). *p \ 0.05 indicates statistically significant differ-

ence from spakwt/wt (unpaired t test)
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Fig. 3 Effect of SPAK on SGLT1 protein abundance in the Xenopus

laevis oocyte cell membrane. Arithmetic means ± SEM

(n = 96–117) of SGLT1 protein abundance determined by chemilu-

minescence in Xenopus oocytes injected with water (dotted bar) or

expressing SGLT1 alone (white bar), or together with wild-type

SPAK (1st black bar) or inactive D212ASPAK (2nd black bar). ***

indicates statistically significant (p \ 0.001) difference from Xenopus

oocytes expressing SGLT1 alone (Kruskal–Wallis test)
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kinases, phosphoinositide-dependent kinase 1 (PDK1)

(Artunc et al. 2006), protein kinase B (PKB/Akt) (Dieter

et al. 2004; Kempe et al. 2010), and serum- and glucocor-

ticoid-regulated kinases (SGK1, SGK3) (Nasir et al. 2010;

Schwab et al. 2008). Further studies will be required to

define the specific role of SPAK in the regulatory network

determining electrogenic glucose transport and the func-

tional states in which the regulation of SPAK takes a leading

part. The comparison between untreated mice expressing

either WNK-insensitive SPAK (spaktg/tg) or wild-type SPAK

(spakwt/wt) clearly indicated that under unstimulated control

conditions SPAK does play a significant role for electro-

genic intestinal glucose transport.

In conclusion, SPAK inhibits SGLT1 and thus contrib-

utes to the complex regulatory network of this important

nutrient carrier.
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